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Abstract

It is shown that the small-angle scattering of X-rays
or neutrons by dislocations within a deformed metal,
which are partially ordered into wall-like structures, is
characterized by several factors. Principally these are
associated with: (i) a single dislocation or dipole; (ii)
the dislocation con®guration in the plane of the wall;
and (iii) the distribution of dislocations across the wall
thickness. With the assumption of isotropic elasticity,
small-angle scattering will be sensitive only to the edge
components of the dislocations. The scattered intensity
is dominated by scattering from dislocations that lie
perpendicular to the scattering vector, q, and reaches a
maximum when q is normal to the slip plane of these
dislocations. Above a particular jqj, the scattered
intensity is sensitive only to the total edge dislocation
content of the scattering dislocations (i.e. scattering is
incoherent), while, below this value, the scattering is
dominated by how the dislocations are distributed in
walls. For walls normal to their slip planes, the
con®guration factor will re¯ect the dislocation distribu-
tion in the plane of the wall, while, for walls parallel to
their slip planes, the distribution in the thickness
direction will be visible. Therefore, even though a
deformed material is composed of complicated disloca-
tion structures, only those segments conforming to these
rather strict prescriptions will be singled out for
scattering, and, by adjusting the beam/slip system
geometry, many parameters of the microstructure can
be determined experimentally.

1. Introduction

This paper is motivated by experiments (Levine et al.,
1999) being carried out on the NIST materials science
beamline at the National Synchrotron Light Source at
Brookhaven National Laboratory, exploring ultra-small-
angle X-ray scattering (USAXS) by deformed single-
crystal metals. Here, we consider the theory of small-
angle scattering from individual defects (dislocations
and dislocation dipoles) and present a framework for
understanding the role of wall con®gurations composed
of these defects.

The mechanical response of a metal to plastic defor-
mation has been traditionally divided into several stages.

Stage I is characterized by a nearly constant ¯ow stress
as a function of applied strain and is observed only in
single crystals at temperatures much lower than their
melting points. In stage II, the stress/strain behavior
becomes linear with a signi®cant slope, resulting in work
hardening. This stage II slope is temperature indepen-
dent. In stage III, temperature-dependent recovery
processes occur, resulting in a decreasing near-parabolic
work hardening. The existence of later stages of work
hardening have also been reported, but stages II and III
are the most important industrially and discussion is
restricted to these stages.

According to the current, imperfect, understanding of
deformation in f.c.c. metals, the elastic self energy of the
system drives the dislocations to organize themselves
into partially ordered wall structures. In stage II (Steeds,
1966; Kocks, 1985; Rollett, 1988; Kuhlmann-Wilsdorf,
1995; Argon, 1996), where our interest begins, disloca-
tion walls often develop parallel to the active slip planes,
perhaps forming partially ordered Taylor lattices
(Kuhlmann-Wilsdorf, 1995). These wall structures are
sometimes referred to as `carpets'. In stage III, the walls
form the boundaries of space-®lling cells (Steeds, 1966;
Kocks, 1985; Rollett, 1988; Kuhlmann-Wilsdorf, 1995;
Argon, 1996). There have also been proposals (Mugh-
rabi et al., 1986; Argon & Haasen, 1993), partially
supported by observations, that the walls may include
dislocation dipoles. Thus, we will focus on scattering by
dislocations distributed in walls of various types.

The theory of small-angle scattering by dislocations
has been the subject of a number of earlier papers
(Atkinson & Hirsch, 1958; Seeger & Kroner, 1959;
Seeger, 1959; Seeger & Brand, 1965), stimulated by early
small-angle-scattering experiments with X-rays (SAXS)
and neutrons (SANS). However, the importance of the
wall and cellular structures described above was not
fully appreciated at the time of this work, so the theory
was necessarily incomplete. Seeger & Kroner (1959)
carried out an elegant analysis for the dilatation ®eld of
the edge dislocation for the general case in which the
dislocation is not straight. However, since we will be
working with mostly two-dimensional wall structures, we
®nd the two-dimensional theory of Atkinson & Hirsch
(1958) more in tune with our point of view, and we will
refer often to it. Certainly, dislocations in deformed
metals are not straight. Nevertheless, two-dimensional
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434 SMALL-ANGLE SCATTERING BY DISLOCATIONS

theory is appropriate for this problem because the
dislocations roughly approximate straight lines over the
length scales probed by the small-angle-scattering
experiments. In terms of the theory presented in this
paper, it is necessary for the dislocations to be
approximately straight over length scales much greater
than the inter-dislocation distance.

In contrast to Bragg peak broadening (Levine &
Thomson, 1997), small-angle scattering is caused exclu-
sively by the local volume change induced by the
dislocations. Thus, in the linear elastic approximation,
only the edge components of dislocations will be visible.
This is because screw dislocations have no net volume
change. We focus on the elastic part of the ®eld because
the additional volume changes due to nonlinearity in the
strain ®elds of both edges and screws can be neglected in
practice for SAXS (Atkinson & Hirsch, 1958).

In the kinematic or single-scattering approximation,
the scattered intensity is composed of a product of
several factors: a factor for the individual atoms, one for
a single defect (either single dislocation or dislocation
dipole), a factor associated with a con®guration of
identical defects and, ®nally, a form factor for the entire
sample. In the following sections, we address each of
these in turn, except for the atomic factor, which in the
case of a pure metal cannot provide an additional scat-
tering contrast mechanism, and the sample size factor,
which appears in a scattering vector range unreachable
in practice. The analysis sections are followed by a
section on computer simulations of relevant dislocation
structures to validate the analysis.

2. Single-defect structure factors

The scattering at small angles can be written in terms of
the total scattering amplitude function, A, as (Guinier,
1994)

I � A�q�A��q�;
A�q� � aa

R �1� �tot�x�� exp�iq � x� dx;
�1�

where aa is the scattering amplitude for a unit volume of
perfect crystal, and the integral is the amplitude struc-
ture factor for the scattering volume. The dislocations
within this volume contribute a total fractional density
change, �tot, at the point x. q is the scattering vector. The
®rst term in the integrand is scattering from the entire
sample which only appears at extremely low jqj. It does
not contribute to the visible small-angle scattering and
can be ignored. Thus, the scattering amplitude becomes

A�q� � aa

R
�tot�x� exp�iq � x� dx: �2�

If the defects are distributed over the volume of the
material at the positions Ri, then the fractional density
change, �tot�x�, is the linear sum of the contributions
from each defect and, if they are all equivalent, then a
decomposition can be made,

I � I=jaaj2 � jadj2 c; �3�
where

ad �
R
��x� exp�iq � x� dx

c �P
i;j

exp�iq � �Ri ÿ Rj��: �4�

Here, ad refers to the structure factor of a single defect,
whether a single dislocation or a dislocation pair etc.,
and c is a discrete ®nite sum that refers to the distri-
bution of defects. We will call c the `con®guration factor'
since it is technically not a structure factor. ��x� is the
fractional density change (dilatation) for a single defect,
with the defect positioned at the origin. Of course, in a
®nite sample, some of the defects will be located near an
external surface, and the boundary conditions for all the
defects are thus not equivalent, but this effect can be
safely ignored.

This decomposition into single-defect and con®gura-
tion factors is only valid if all the defects are the same. In
the general case, dislocations in a given con®guration
will possess different Burgers vectors and different slip
planes, so they are not equivalent. In a later section, we
will show how to write these factors so that they can be
decomposed in the desired way; for now we work out the
form for ad, as de®ned above, to see how it depends on
Burgers vector and slip plane, saving the generalization
for later.

The ®rst case to be treated is the single dislocation,
aligned along the Z axis. For most cases of small-angle
scattering, it can be assumed that the scatterer and
matrix have two distinct densities with a sharp boundary
between them. For dislocations, we must consider
isotropic elasticity, where only the edge component of
the dislocation contributes a density change (Hirth &
Lothe, 1982), given by

� � be��sin ��=u

� � ÿ�1=2����1ÿ 2��=�1ÿ ���; �5�

where the edge component of the Burgers vector, be, is
along the X axis, and the polar coordinates � and u
specify the position of the ®eld point on the XY plane
with the angle measured with respect to the X axis, as
shown in Fig. 1. � is Poisson's ratio.

As noted earlier, the dislocations show enough two
dimensionality to make two-dimensional modeling a
reasonable approximation. But it is necessary to limit
the distance in the `Z direction'. The reason is not that a
dislocation ever ends in the crystal, but rather that a
dislocation length is part of a large loop which closes on
itself over some distance. More generally, the dislocation
is tied into a larger structure over a distance which we
can model as an effective length for the two-dimensional
dislocation. Thus, we integrate along the dislocation line
(Z direction) for a ®nite length, ÿH to H,
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asingle � be�

Z R
R0

Z 2�

0

sin �

u
exp�iqpu cos�� ÿ ���u du d�

�
Z H

ÿH

exp�iqzz� dz

� 4�be� sin �
J0�qpR�

qp

ÿ J0�qpR0�
qp

� �
sin�qzH�

qz

� 4�be�
sin �

qp

sin�qzH�
qz

: �6�

Here, asingle is the structure factor for a single dislocation
and J0 is the zero-order Bessel function. The polar angle
� and the radial distance qp give the projection of the
scattering vector onto the XY plane. As before, the
angle is measured with respect to the edge component of
the Burgers vector (X axis). In these equations, the last
step is valid only when qpR � 1 and qpR0 � 1, where
R is the upper cut-off for the dislocation strain ®eld, and
R0 is the lower cut-off at the effective dislocation core
radius. For this derivation to be correct, it is necessary
that H � R. The exact expression indicates that there is
no scattering by the dislocations at qp � 0, as noted by
Dexter (1953); this must be correct, because the dislo-
cation induces zero net volume change in the material.
When the scattering vector is very small, it samples over
a region of zero volume change and is not scattered.
These results are in the form already given by Atkinson
& Hirsch (1958). We note here the very important point
that the length factor, sin�qzH�=qz, is a function with a
very strong and sharp peak at qz � 0 for dislocation
lengths typical of deformed metals. Thus, the effective
dislocation length can be measured directly in experi-
ments that probe the angular dependence of the small-
angle scattering.

The second case to be treated is a pair of dislocations
displaced from one another in the Y direction by the
distance 2d. See Fig. 2. The strain ®eld of the two
dislocations is expanded in a Taylor-series expansion up

to ®rst order. There are two regions of expansion, u > d
and u< d, but the two expansions have the same func-
tional form and, in a straight-forward extension of the
above analysis, the total structure factor can be written

adipole � �8�be� sin2 �=q3=2
p ��2=�d�1=2 sin�qzH�=qz; �7�

which is valid in the same range of q space as before, and
where the oscillatory part of a Bessel function is again
ignored.

A comparison of (6) and (7) shows two very impor-
tant differences between scattering by single disloca-
tions and scattering by dipoles. First, the q dependences
of the scattering amplitudes differ by qÿ1=2

p , which results
in a qÿ1

p difference in the scattered intensities. In the
reciprocal-space range where qp � 2�=d and ignoring
angular effects, the dipole and the single dislocation
have similar scattering intensities. In USAXS experi-
ments, however, qp � 2�=d, thus resulting in a much
higher scattered intensity for the dipole. This is easily
understood since a dipole can be regarded as a planar
region of vacancies which has a net volume change at
small qp, whereas the dislocation dilatation ®eld
averages to zero. The requirement that qp � 2�=d just
means that the X-ray beam must sample a region much
larger than the defect. Second, the angular distributions
of the scattering are profoundly different. The scattered
intensity from dipoles goes as sin4 � as compared with
sin2 � for single dislocations. Thus, the high relative
scattering by dipoles over single dislocations will only be
visible over a narrow range of orientational angles.

In addition to the elastic dilatation, which is a feature
of only the edge component of the dislocation Burgers
vector, dislocations possess density changes in the core,
and the nonlinear part of the elastic ®eld (even the shear
component) also contributes a density change. However,

Fig. 2. A dislocation dipole at the origin is oriented along the Y axis,
with separation distance 2d. The edge component of the Burgers
vectors of the dipole is along the X axis. The coordinate de®nitions
are the same as those in Fig. 1.

Fig. 1. Coordinate system for a dislocation. The dislocation lies along
the Z axis perpendicular to the paper at the origin, and the edge
component of the Burgers vector lies along the X axis. The
projection of the scattering vector, q, in the XY plane has cylindrical
coordinates �qp; ��. A point in the XY plane has the cylindrical
coordinates �r; ��. The wall extends in the w direction with t
describing the perpendicular direction.
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as has been shown elsewhere, these contributions are
negligible compared to the elastic expressions in the
region of qp space accessible to ultra-small-angle scat-
tering (Atkinson & Hirsch, 1958). The same is true of
vacancies and small collections of vacancies that can
form during deformation.

3. Con®guration structure factors

3.1. General

The main difference between this work and that of
previous authors is that we use a different factor for the
dislocation con®guration. Atkinson & Hirsch (1958)
treated the dislocations as a cloud of independent
scatterers. Seeger (1959) treated dislocation pile-ups, but
these con®gurations are rarely observed in deformed
metals. Seeger & Brand (1965) also considered small
dislocation loops scattering independently, which is
appropriate for an irradiated sample. In fact, it is now
well understood that dislocations in deformed metals
form partially ordered structures, mostly walls (Steeds,
1966), and that is the case considered here.

Dislocations in a wall can be divided into distinct
populations. First, for a given slip system, there exist
dislocations with both positive and negative Burgers
vectors. Second, dislocations from more than one slip
system may be present in a wall, depending on the
deformation history and the strain geometry. Third, the
dislocations may lie in different directions in the wall.
Finally, some of the dislocations may be better repre-
sented as dislocation dipoles, rather than single dislo-
cations. The analysis for this completely general case is
quite complicated, and simplifying assumptions must be
made to build a useful physical picture. In particular, to
obtain a usable solution, it is necessary to achieve a
decomposition into a number of factors, and the ®rst
goal in this section is to show under what conditions this
can be achieved for the single defect and con®guration
factors.

Factorization cannot be achieved if both dipoles and
dislocations coexist in a wall, because the single-defect
functional dependence on qp is different for the two
cases. But if only one class of defect, either single
dislocations or dipoles, is dominant, then the functional
form for this scattering can be separated from all other
con®gurational considerations. As shall be seen later,
however, there is a range in reciprocal space where the
contributions of single dislocations and dipoles can be
separated and direct experimental measurements of the
relative numbers of these defects may be possible.

The problem can be simpli®ed further by focusing on
single-crystal f.c.c. metals, with f111gh110i slip systems.
In the early stages of deformation, i.e. stage II, walls
often develop parallel to the f111g slip planes ± the
`carpets' referred to in the Introduction. The dislocations
are generally parallel to one another, and may take the

form of partially ordered Taylor lattices (Kuhlmann-
Wilsdorf, 1995). In later stages of deformation, walls are
formed roughly normal to the primary slip planes,
presumably the end result of cross slip and climb from
the initial slip planes, or the interaction between two slip
planes operating simultaneously. For example, two
separate slip planes will intersect in h110i-type direc-
tions. Dislocation walls created by such an interaction
contain Burgers vectors from two different slip planes,
but the dislocations will all be parallel to the intersection
line of the two slip planes. Thus, for either the carpets or
the stage III walls, it is reasonable to assume that the
dislocations in a given wall all lie essentially parallel to
one another, even though they will have both Burgers-
vector signs, and may even have more than one Burgers-
vector direction on more than one slip plane. If the
defects all lie parallel to one another, it is possible to
factor out the line-direction part of the scattering
function, and a further factorization has been achieved.

We start by rewriting the structure factor for an
individual defect, i, as a product,

ai � �iAi fi���: �8�
In this equation, since the defects can belong to more
than one slip system, they may have a variety of Burgers
vector edge components, �i � ��be�i, and angular
factors, fi���. As shown in (6) and (7), f and A have
different functional forms for single dislocations and for
dipoles. However, A does not depend on the sign of the
Burgers vector or the particular slip plane. With the
above notation, we include the Burgers vector and
angular factors, �i and fi���, in the con®guration factors,
and write W for the new con®guration factor,

W �P
i;j

�i�j fi���fj��� exp�iq � �Ri ÿ Rj��; �9�

where, from (6) and (7),

I � A2W
Asingle � �4��=qp��sin�qzH�=qz�
Adipole � �8��=q3=2

p ��2=�d�1=2�sin�qzH�=qz�:
�10�

Although this separation of A andW is only rigorously
valid for materials that satisfy the earlier assumption of
isotropic elasticity, the general results of this paper
should be substantially the same for anisotropic crystals.

These equations are valid only if a particular defect
type (dipole or single dislocation) is dominant in a given
wall. If both dipoles and single dislocations exist in
signi®cant numbers in the same wall, then the scattered
intensity cannot be factored in this way, and interference
between the two types of defects will be present. A
second proviso is that (9) applies to a single wall. Scat-
tered intensity from more than one wall is assumed to be
incoherent, and is simply a sum over the different walls.
For q< 0:0002 AÊ ÿ1, at large strains in Cu or Al solid-
solution alloys, complete cells will scatter; but this type
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of scattering is not yet experimentally accessible and is
not the subject of this paper.

Equations (9) and (10) describe the scattering from a
speci®c con®guration of dislocations or dipoles in a
particular wall. For the averaged scattering over a
collection of similar walls, the averaged intensity
becomes

hIi � A2hWi: �11�

Now it is clear why the defect structure factor, ad,
introduced in (3), is not the appropriate expression
when averages over probability distributions must be
taken; only A is invariant for all defects of a given type
(i.e. single dislocation or dipole) in a distribution of
defects.

The analysis of hWi forms the content of the
remainder of this subsection. First, a joint pair-distri-
bution function is de®ned for the double sum over pairs
in (9). Let }�Ri;Rj� be de®ned as the joint probability
for ®nding one dislocation, labeled i at Ri, and a second
dislocation, labeled j at Rj. Then, following (9), hWi is
written

hWi �P
i;j

�i�j fi���fj���

� R R }�Ri;Rj� exp�iq � �Ri ÿ Rj�� dRi dRj ;R R
}�Ri;Rj� dRi dRj � 1;

�12�

where the second equation gives the normalization used
for the joint pair-distribution function. In the double
sum over the dislocation pairs, the diagonal terms for
i � j refer to the same dislocation and represent the self-
scattering of the separate dislocations. For these self-
scattering terms, of course, } � ��Ri;Ri�. For all pairs,
however, where the dislocations making up the pair are
different dislocations, the joint pair-distribution function
will be assumed to be a smooth function. Thus, we can
write

hWi �P
i

�2
i f 2

i ��� �
P
i 6�j

�i�j fi���fj���

� R R }�Ri;Rj� exp�iq � �Ri ÿ Rj�� dRi dRj: �13�

Now remember that the dislocations consist of several
populations with different Burgers vectors, slip planes
etc., and that within each type, e.g. a given Burgers
vector etc., the dislocations are equivalent and have
equal }�Ri;Rj�. Thus the sums over dislocations of a
given type can be replaced by Nm etc., where Nm refers to
the number of dislocations of type m. Accordingly, the
component parts of hWi � hWmmi � hWmni can be
written

hWmmi �
P
m

Nm�
2
m f 2

m��� �
P
m

Nm�Nm ÿ 1��2
m f 2

m���

� R R P�Rm;R0m�
� exp�iq � �Rm ÿ R0m�� dRm dR0m;

hWmni �
P

m6�n

NmNn�m�n fm���fn���

� R R P�Rm;R0n�
� exp�iq � �Rm ÿ R0n�� dRm dR0n; �14�

where the ®rst equation refers to dislocations belonging
to the same type and the second to dislocations of
different types. The factor Nm�Nm ÿ 1� in this equation
arises because there are Nm�Nm ÿ 1� terms in the off-
diagonal double sum for each dislocation type in the
second term of (13). The new joint pair-distribution
function P�Rm;R0n� is now the joint probability of
®nding one dislocation of type m at position Rm and a
second (different) dislocation of type n at R0n. (Of
course, the dislocations may be of the same type, m � n,
or of different types, m 6� n.) It is very important to note
that this joint pair-distribution function is not the stan-
dard pair-correlation function. See Guinier (1994).
These equations can be combined into the ®nal equa-
tions,

hWi �P
m

Nm�
2
m f 2

m���
�

1ÿ R R P�Rm;R0m�

� exp�iq � �Rm ÿ R0m�� dRm dR0m
	

�P
m;n

NmNn�m�n fm���fn���
R R P�Rm;R0n�

� exp�iq � �Rm ÿ R0n�� dRm dR0n;R R P�Rm;R0n� dRm dR0n � 1; �15�

where the double sum is taken over all �m; n�. The last
equation sets the normalization for the joint pair-
distribution functions.

Equation (15) has a very important form. The ®rst
term, the one with unity in the brackets, is the self-
scattering term, which is independent of the distribution
function because a given dislocation is fully correlated
with itself. It is also independent of the scattering vector,
q, and is proportional to the number of scatterers, Nm.
This ®rst term will be seen to have special importance in
the following for the case where the net Burgers vector
in a wall is near zero.

Finally, we note that although it is physically impos-
sible for two different dislocations to occupy the same
position, this does not mean that we must require
P�Rm;R0n� � 0 for Rm � R0n. Although physically
incorrect, we will show in a later section that the
resulting error is insigni®cant. This allows us to use much
simpler distribution functions in the analysis.
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3.2. Walls of zero thickness

Because the R dependence of the exponential in (15)
is a function only of the difference between the dislo-
cation positions, it is natural to introduce a change of
variables,

Rm � R0n � 2r0mn

Rm ÿ R0n � rmn:
�16�

Here, it is assumed that the wall has zero thickness; in
the next subsection, the results are generalized to ®nite
thickness. Thus, the position vectors in (15) become
scalars, and the product in the exponential will be
chosen such that qw lies in the wall, normal to the
dislocation lines. Because the integration is ®nite, one
must integrate over the appropriate limits. For a wall
that extends from R � 0 to R � �L, the initial and
transformed integration spaces are shown in Fig. 3. Note
that the Jacobian for the transformation is 1, and
dR dR0 � dr dr0. It is reasonable to assume that the
probability distribution for the dislocations depends
only on their relative positions, r, and not on their
average positions, r0. With this assumption, the integral
over r0 isR R P�Rm;R0n� cos�qw�Rm ÿ R0n�� dRm dR0n

� R R P�rmn; r0mn� cos�qwrmn� drmn dr0mn

� R P�rmn� cos�qwrmn� drmn

R
dr0mn: �17�

The two integrals in the last line are to be integrated
over the rotated rhombus in Fig. 3. Because of the
symmetry about the r0mn axis, the integral only needs to
be carried out over the upper triangle of the rhombus,
for rmn > 0. Thus,R P�rmn� cos�qwrmn� drmn

R
dr0mn

� 2
RL
0

P�rmn� cos�qwrmn� drmn

RLÿrmn=2

rmn=2

dr0mn

� 2
RL
0

�Lÿ rmn�P�rmn� cos�qwrmn� drmn: �18�

The normalization of P�rmn� follows from that for the
total distribution function,

1 � R R P�Rm;R0n� dRm dR0n
� R R P�rmn; r0mn� drmn dr0mn

� 2
RL
0

P�rmn��Lÿ rmn� drmn: �19�

When all dislocations are completely random, it follows
that Prandom � 1=L2.

The function P�rmn� requires special attention. From
its de®nition, P�Rm;R0n� � P�rmn; r0mn� � P�rmn�, it
remains a joint pair-distribution function, even though it
depends only on the single variable, rmn, the pair
separation distance. Thus, P�rmn� should not be inter-

preted as the probability of ®nding a dislocation pair
with separation rmn.

Using (17) and (18) in (15), the con®guration factor,
hWi, becomes

hWi �P
m

Nm�
2
m f 2

m��� 1ÿ hWmmi� �

�P
m;n

NmNn�m�n fm���fn���hWmni;

hWmni � 2
RL
0

�Lÿ rmn�P�rmn� cos�qwrmn� drmn: �20�

Fig. 3. Coordinate system for integration over wall variables. In (a), the
original integration region in the variables �R;R0� is a square of side
L. In the new variables, �r; r0�, the integration region is the rotated
rhombus (b).
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This is a very general equation, depending only upon the
joint pair-distribution functions for the pairs �mn� within
the populations. Note that, in general, correlations exist
between pairs of plus and minus Burgers vectors, and
between dislocation pairs on different slip planes. Recall
also that it is assumed that only the distances between
the dislocations of a pair are correlated. The midpoint of
the pair is randomly distributed over the wall, and is
uncorrelated with other pair midpoints.

The part of the sum over populations that relates to
Burgers-vector sign can be further manipulated if the
excess sign (proportional to the net Burgers vector), Bs,
and the total number of dislocations, Ns, for each slip
system, s, are introduced:

Bs � N�s ÿ Nÿs
Ns � N�s � Nÿs :

�21�

Then the sum over the positive and negative dislocations
for a given slip plane group can be carried out explicitly
to give

hWi �P
s

b2
e�s�f 2

s ����Ns ÿ N�s hW��ss i ÿ Nÿs hWÿÿss i�

�P
s;s0
�be�s�be�s0�fs���fs0 ���=4�

� ��NsNs0 � BsBs0 ��hW��ss0 i � hWÿÿss0 i�
� �NsBs0 � Ns0Bs��hW��ss0 i ÿ hWÿÿss0 i�
ÿ 2�NsNs0 ÿ BsBs0 �hW�ÿi�;

hW��ss0 i � 2
RL
0

�Lÿ rss0 �P���rss0 � cos�qwrss0 � drss0 etc:;

�22�
where the con®guration factors hW��ss0 i refer to both
dislocations positive and hW�ÿss0 i refer to unlike sign
Burgers vectors. It is assumed that the con®guration
factors satisfy the relations

hW�ÿss0 i � hWÿ�ss0 i: �23�
Again, these equations are quite general, and describe
different distributions of like and unlike signs within a
given slip plane set, and of course also allow for different
distributions between slip planes. The equations are
complicated, but that is a re¯ection of the complicated
nature of the dislocation ordering problem. For
example, when one sign of Burgers vector (say ÿ) is in
the minority, then ordering will be dominated by the
majority population, and the minority will tend to be
disordered (relative to itself), with possibly strong
correlations between unlike dislocations. Thus, hW��ss i
and hW�ÿss i may be strongly correlated, while hWÿÿss i
may be nearly random since the average negative
dislocation separation greatly exceeds the relevant
correlation distances. On the other hand, for B � 0, all
distribution functions are likely to be strongly corre-

lated. Since this B � 0 case is of great interest for
deformed metals, we return to it at the end of x3.4.

When the populations are fully disordered, then a
good approximation will be

hW0
ss0 i � hW��ss0 i � hWÿÿss0 i � hW�ÿss0 i; �24�

and one can write the very simple result

hWi �P
s

b2
e�s�Ns f 2

s ����1ÿ hW0
ssi�

�P
s;s0

be�s�be�s0�fs���fs0 ���BsBs0 hW0
ss0 i: �25�

Thus, if there are no special correlations between like
and unlike sign dislocations, the walls are most trans-
parent when the net number of positive and negative
dislocations are equal and Bs � Bs0 � 0, with only the
term linear in N contributing. This linear term can be
simpli®ed further by solving explicitly for hW0

ssi. For
completely uncorrelated dislocations within a single slip
plane,

hÿW0
ssi � sin2�qwL=2�=�q2

wL2=4�;
hWi � b2

eNf 2����1ÿ sin2�qwL=2�=�q2
wL2=4��: �26�

This equation has some very interesting properties.
First, as qw ! 0, the scattering goes to zero quad-
ratically. Second, as the scattering vector increases
such that qwL� 1, the scattering goes to the self-
scattering limit, proportional to the total number of
dislocations, N. Experimentally, it will usually be the
case that qwL� 1, so the wall function for B � 0 is a
constant, independent of qw. The fact that the wall
function goes to zero at qw � 0 in this case is simply
due to the fact that we are then sampling over a
region with no net volume change. The reader should
not confuse this behavior of hWi as qw ! 0 with the
near-zero behavior of the single dislocation structure
factor of x2. In particular, qw in (26) and qp in (6) are
generally not equal and the widths of the two holes at
the origin are also different.

During the early stages of uniaxial deformation, the
walls contain nearly equal numbers of positive and
negative dislocations (Argon & Haasen, 1993). But
one does not expect the con®guration factors to be
exactly equal for the ���� and ��ÿ� cases. We return
later to the case where the dislocations are partially
ordered.

Now compare this result for B � 0 with the case of a
totally disordered wall containing only positive dislo-
cations from a single slip system (B � N). Equation (25)
can then be integrated immediately, with P�r� � 1=L2,
to give

hWi � b2
eNf 2����1ÿ sin2�qwL=2�=�q2

wL2=4��
� b2

eN2f 2��� sin2�qwL=2�=�q2
wL2=4�: �27�

The second term dominates only if qw � �N=L2�1=2.
For realistic experimental conditions, this requirement
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can be satis®ed only if qw is nearly perpendicular to
q. The second term is the standard optics diffraction
function for a single slit the size of the wall.

Thus, when the dislocations are totally random, and
qw � �N=L2�1=2, the scattering is the same for both
B � 0 and for B � N. As qw ! 0, the scattering will be
proportional to the square of the uncompensated
Burgers vector.

In using these equations, one should be guided by the
apparent fact that, in a deforming metal, any given
region will tend to be in single slip, with a preponder-
ance of dislocations from a single slip plane (Argon &
Haasen, 1993). The conjugate systems are probably
important as a means to form `hard spots' which tie the
con®guration down to the underlying lattice, but usually,
in any given local region, these dislocations are only a
small minority in the total dislocation population. Thus,
for scattering purposes, it may be appropriate to use the
equations as if only a single slip system is operating for a
given wall, and average over the different slip systems
only when the intensities of individual walls are aver-
aged.

3.3. Walls of non-zero thickness

The walls of dislocations formed during deformation
are probably diffuse and have a nonzero thickness. In
general, the mechanisms responsible for wall forma-
tion are different in the length and thickness direc-
tions. For example, if a wall is perpendicular to the slip
plane of the component dislocations, then the forma-
tion mechanism in the length direction would include
dislocation climb and source distributions, whereas the
thickness formation mechanism would include elastic
interactions and glide. Therefore, it is reasonable to
assume that the dislocation distributions in the thick-
ness direction and in the length direction are inde-
pendent, so that P�w; t; w0; t0� � P�w;w0�P�t; t0�, where
t and w are the coordinates of a dislocation in the
thickness and length directions, respectively. Then hWi
can be written

hWi �P
m

Nm�
2
m f 2

m���
h

1ÿ 2
R R P�wm;w0m�

� cos�qtxmm� dwm dw0m

� RL
0

�Lÿ ymm�P�ymm� cos�qwymm� dymm

i
� 2

P
m;n

NmNn�m�n fm���fn���

� R R P�wm;w0n� cos�qtxmn� dwm dw0n

� RL
0

�Lÿ ymn�P�ymn� cos�qwymn� dymn; �28�

where

wm ÿ w0n � xmn

wm � w0n � 2x0mn

tm ÿ t0n � ymn

tm � t0n � 2y0mn

�29�

are the equations for transforming the coordinates into
the `rotated' coordinates suitable for the integrations,
just as before. To simplify the analysis, we split the total
wall factor into factors for the thickness, hW t

mni, and
length, hWw

mni, components:

hWi �P
m

Nm�
2
m f 2

m����1ÿ hW t
mmihWw

mmi�

�P
m;n

NmNn�m�n fm��� fn���hW t
mnihWw

mni

hW t
mni �

R R P�wm;w0n� cos�qtxmn� dwm dw0n

hWw
mni � 2

RL
0

�Lÿ ymn�P�ymn� cos�qwymn� dymn:

�30�
We will explore two simple cases for hW t

mni. In the ®rst
case, the dislocations are randomly distributed over a
®xed width. Then P�wm;w0n� � 1=l2

t , for 0<wm;w0n < lt,
where lt is the wall thickness. Such a wall has sharp
boundaries at w � 0; lt. Then, when the coordinate
transformation is invoked for wm;w0n, as before, and the
integrations are carried out over xmn and x0mn,

hW t
mni �

sin2�qt lt=2�
q2

t l2
t =4

: �31�

This thickness factor is the familiar single-slit diffraction
function that was found in (26), and has a power-law fall-
off at high qt of qÿ2

t . If the wall is suf®ciently thin such
that qtlt � 1, then hW t

mni � 1 and the result reverts to
that of the previous section.

A second simple case for a wall of ®nite thickness can
be obtained by assuming that the distribution function in
the width direction is Gaussian. Thus,

P�wm� � �1=lt�
1=2� exp�ÿ�wm=lt�2�; �32�

where lt is the width of the distribution, and the total
joint pair-distribution function in the thickness direction
is P�wm�P�w0n�. Taking the same transformation of
coordinates wm;w0n into xmn; x0mn as given in (29), the
joint pair-distribution in xmn; x0mn space is

P�xmn; x0mn� � P�wm�P�w0n�

� 1

� l2
t

exp ÿ 1

l2
t

�x02mn � x2
mn=2�

� �
; �33�

so that the width part of the distribution function is
again a product, and hW t

mni can be written
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hW t
mni �

R1
ÿ1

R1
ÿ1
P�xmn; x0mn� cos�qtxmn� dxmn dx0mn

� �2=lt�
1=2� R1

0

exp�ÿx2
mn=4l2

t � cos�qt xmn� dxmn

� 21=2 exp�ÿ 1
2 q2

t l2
t �: �34�

This equation is similar to the sharp (thick) wall case,
except that hW t

mni is a Gaussian instead of a single-slit
diffraction function. Both distributions have widths of lt

but the scattering by the sharp wall has a 1=q2
t power-law

fall-off at large qt, while the scattering by the diffuse wall
decreases more rapidly.

It is important to note an essential constraint in the
analysis of hW t

mni. In the earlier analysis of hWw
mni,

we made the assumption that the distribution
function, P�ymn; y0mn�, can be factored, P�ymn; y0mn� �
P�ymn�P�y0mn�. This means that there is no correlation
between the distribution of pair distances and pair
centers. But when a pair is near the end of the wall, this
assumption must break down because a pair must sense
the end of the wall and must not overlap it. That is, the
joint pair-distribution function, P�ymn�, must also
depend on the position of the midpoint, y0mn. This error is
not important if, as expected, the length of the wall is
very large compared to the dislocation correlation
length. In this case, only a very small percentage of the
dislocations fail to follow the factored distribution
function. But for the wall-width analysis, the wall width
may not be very much larger than the corresponding
dislocation correlation length. In this case, it is not valid
to split P�xmn; x0mn� into independent factors. Thus,
except for special cases like those explored above, one
cannot go further than the ®rst equation of the width
analysis, (28), in a rigorous general treatment.

Another approach for the treatment (Koberstein et
al., 1980) of diffuse boundaries in small-angle scattering
has proven very useful for the interpretation of scat-
tering by block co-polymers with diffuse interfaces. We
now adapt that approach to the case of scattering by a
dislocation wall.

If the dislocation pair-distribution function is uncor-
related, it follows that P�wm;w0n� � P�wm�P�w0n�, and

hW t
mni �

R R P�wm;w0n� cos�qt xmn� dwm dw0n
� R R P�xmn � w0n�P�w0n� dw0n

� �
cos�qtxmn� dxmn

� F�P 
 P�: �35�

In this equation, F is the (one-dimensional) Fourier
transform and
 denotes the Fourier convolution of two
functions. Following Ruland (1971) (see also Koberstein
et al., 1980), a wall with a diffuse boundary is introduced
as the convolution between a probability function,
P0�wm�, representing a sharp wall with width lt, and a
smoothing function, S�wm�. The smoothing function
goes uniformly to zero for large wm and has a diffuse

width, ltd. The probability function for the non-sharp
wall thus has the form

P�wm� � S�wm� 
 P0�wm�: �36�
Using the Fourier convolution theorem, we obtain

hW t
mni � F�P0 
 S
 P0 
 S�
� hW t0

mni�F�S��2
� �4=q2

t l2
t ��F �S��2; �37�

where hW t0
mni is the sharp wall factor. The last expression

is valid for large qtlt and �F �S��2 will be a function of qt

which sharpens the qÿ2 law for large qt.
Given a model for the smoothing function, S, the

observed deviation from a qÿ2 scattering amplitude can
be used to obtain an estimate for ltd. This issue has been
addressed extensively, most notably again by Ruland
(1971) and Koberstein et al. (1980). The most common
approach is to use the sigmoidal-gradient model in
which the smoothing function is assumed to be Gaus-
sian. The resulting thickness part of the wall factor is
then given by

hW t
mni � �4=q2

t l2
t ��1ÿ �2q2

t �; �38�
where � is the standard deviation of the Gaussian
smoothing function.

In summary, we have shown that reasonable
assumptions about the joint pair-distribution functions
in walls with non-zero thickness lead to a con®guration
factor that contains a `width factor' in addition to the
`length factor' discussed in the previous subsection. For
walls with sharp boundaries, this width factor has a qÿ2

t

scattering-amplitude dependence in the large-qt (Porod)
regime. If the wall has a diffuse boundary, there is an
additional qt dependence which can be quanti®ed in
terms of the smoothing function, S�w�. This additional qt

dependence serves to increase the absolute magnitude
of the slope of the scattering curve in q space. The
Gaussian case, which was worked out in detail, corre-
sponds to a Gaussian smoothing function with a wall of
zero width. All of these ®ndings are in keeping with
classical small-angle scattering. However, to reach these
results, it was necessary to postulate zero correlation
between the dislocations in the width direction. This
may be a reasonable assumption in some cases, and
where it breaks down drastically it may be possible to
revert to the dipole treatment of x2.

3.4. Ordered and partially ordered walls

The long-range interaction of the dislocations not
only causes the dislocations to form wall structures but
also produces varying degrees of dislocation ordering
within the walls themselves. Such internally ordered
walls scatter differently from disordered walls. In this
subsection, some generic effects of such ordering within
the walls will be explored.
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Consider ®rst the case of a totally ordered tilt wall,
with N � 1 dislocations of the same sign, separated from
one another by the distance L=N:

W � b2
e f 2��� PN

n�0

exp�iqwnL=N�
� � PN

n�0

exp�ÿiqwnL=N�
� �

� b2
e f 2��� sin2�qw�N � 1�L=2N�

sin2�qwL=2N�
� b2

eN2f 2��� sin2�qwL=2�
q2

wL2=4
; N � qwL; �39�

which is the scattering function for a grating. For
qw � N=L, this result becomes indistinguishable from
the case of a random wall with B � N and
qw � �N=L2�1=2. See equation (27).

A completely ordered B � 0 wall with alternating
sign dislocations gives

W � b2
e f 2��� PN

n�0

�ÿ1�n exp�iqwnL=N�
� �

� PN
n�0

�ÿ1�n exp�ÿiqwnL=N�
� �

� b2
e f 2��� sin2�qwL=2�

cos2�qwL=2N� : �40�

Examination of (39) and (40) shows that the effect of
replacing every other positive dislocation with a nega-
tive dislocation is to `shift' the diffraction pattern by half
the period, or �N=L. The reason for this unusual
behavior is that each positive/negative dislocation pair
forms a double-sized unit cell with peaks spaced half as
far apart in reciprocal space. The multiplying form factor
of the dislocation pair has zeros at the original lattice
sites, causing the apparent shift. The width of the
diffraction peak is unaffected. It is the presence of both
positive and negative dislocations in the unit cell that
distinguishes this case from the usual grating result. A
somewhat different physical insight derives from the fact
that the scattering from adjacent dislocations is phase
shifted by �, so forward scattering is zero for qw � 0,
unlike the usual situation where all elements of a
structure scatter in phase.

It is necessary to avoid confusion regarding the
periodicity in q space associated with the wall of dislo-
cations, which leads to a `grating function' for the
dislocations, and the periodicity in the lattice which
leads to the Bragg peaks. Because of the similarity in
concept, we will use the term `dislocation Bragg' period
to refer to the grating period of the ordered (and
partially ordered) dislocation scattering.

In the literature on small-angle scattering from
particles (Debye, 1930; Porod, 1982; Guinier, 1994),
Debye has given a simple treatment of pair correlation
that leads to analytical results, which is instructive to
invoke for the dislocation case. In particular, if it is
assumed that P�r� has the form

P�r� � 0;

P�r� � 1=L2;

0< r< l0;

l0 < r<L;
�41�

then for such a distribution of simple dipoles or single-
sign dislocations in a single slip system, (20) takes the
form

hWi � b2
eNf 2��� � b2

eN�N ÿ 1�f 2����2=L2�

� RL
l0

�Lÿ r� cos�qwr� dr

� b2
eNf 2��� � b2

eN�N ÿ 1�f 2���

� sin2�qwL=2�
q2

wL2=4
ÿ 2�1ÿ l0=L� sin�qwl0�

qwL

� �
: �42�

The ®rst term in the brackets is the con®guration factor
for the random wall [see (27)], and the second term is
due to the lower cut-off at the exclusion distance, l0. In
the case of particles, the exclusion region exists because
two particles cannot occupy the same space. In the case
of dislocations, a similar result arises owing to the strong
repulsion between two dislocations of like sign at very
small distances. For unlike sign, the dislocations will
annihilate each other below a critical distance, even if
spontaneous climb is necessary. This effect is observed
as a maximum absolute density of dislocations in heavily
deformed metals (Essman & Mughrabi, 1979). When
2Nl0=L> 1, the con®guration factor becomes negative
outside the main peak, but this can never be the case,
because it would mean that the mean distance between
dislocations is smaller than the exclusion distance. For
all physically realistic parameters in (42), the effect of a
small exclusion zone around a dislocation is negligible.

Next, consider the important effect of partial ordering
of defects in the wall. Rewriting (22) for a single slip
system gives the symmetrical result

hWi=b2
e f 2���N � 1ÿ �N�=N�hW��i ÿ �Nÿ=N�hWÿÿi

� �N=4���1� B=N�2hW��i
� �1ÿ B=N�2hWÿÿi
ÿ 2�1ÿ B2=N2�hW�ÿi�: �43�

By symmetry, we can place two conditions on this
equation:

hW��i
���

B�0
� hWÿÿi

���
B�0

hW��i
���

B�N
� hWÿÿi

���
B�ÿN

:
�44�

Also, the joint pair-distribution function for partially
ordered dislocations is likely to resemble that for a
partially ordered two-component solid. Thus, for dislo-
cations of the same sign, we consider the functional
forms
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P���r� � �1=L2��1� C exp�ÿr=�� cos2��N�r=L��;
Pÿÿ�r� � �1=L2��1� C exp�ÿr=�� cos2��Nÿr=L��;

�45�
where C is a parameter controlling the strength of the
correlation and � is its range. For simplicity, we do not
include an exclusion zone at the origin; such a zone
would not substantially affect the wall con®guration
factor. Also, as long as �� L, the error in the
normalization for these equations will be negligible. The
periods in these functions were chosen so that they
would be correct when their contributions are signi®-
cant. Thus, when B � N, the average spacing for the
positive dislocations will be N=L � N�=L and, when
B � 0, the average spacing will be N=2L � N�=L.
Equation (45) may become invalid for the minority
population, which will soon become very highly disor-
dered, but the contribution of this term is minimized by
the pre-factor �1ÿ B=N���2 in (43). Of course, in these
equations, both C and � should be functions of B.
However, since we are only interested in qualitative
behavior, we will let them be constants.

It remains to specify the correlation function for
unlike pairs. The pre-factor for hW�ÿi has a maximum
at B � 0, making this the most important point for this
term. Here, the energetics will favor pairing of unlike
dislocations so that negative dislocations tend to sit
between positives etc. Thus, for simplicity, we take

P�ÿ�r� � �1=L2��1� C exp�ÿr=�� sin2��Nr=2L��: �46�
In reality, the correlation strength and range for unlike
pairs will certainly not be the same as for like pairs, but
such an approximation is adequate for our purpose of
studying the qualitative features of partial ordering. As
we move away from B � 0, the period given in (46) will
remain correct because this is the smallest period
possible for (�ÿ) pairs. Of course, the functional form
may change once a single sign dominates, but then the
pre-factor for hW�ÿi becomes very small, once again
minimizing any error.

Fig. 4 shows the results for this simpli®ed version of
partial order near B � 0. Here, we plot only the hWmni
part of the total hWi=b2

e f 2���N, i.e. the term propor-
tional to N=4 in (43). Figs. 4(a) and 4(b) use B � 0,
N � 20, and C � 0:5; the other parameters used are: (a)
� � 10, L � 100 and (b) � � 20, L � 200. As expected,
the position of the dislocation Bragg peak is set by the
dislocation spacing, the width is determined by the
correlation range, and the strength depends on the
number of dislocations within this range. Thus, in Fig.
4(b), the dislocation Bragg peak shifts position and is
narrower, both consistent with doubling the dislocation
spacing. Fig. 4(c) uses the same parameters as Fig. 4(a)
except that B � N=10, and shows the distinctive signa-
ture for the B 6� 0 case. The narrow peak at the origin is
proportional to B2 and its width is proportional to the

Fig. 4. Partially ordered wall. (a) Plot of term proportional to N=4 in
equation (42) with L � 100, C � 0:5, � � 10, N � 20, and B � 0.
The plot shows the dislocation Bragg peak with the position set by
the dislocation spacing, the width set by the correlation distance,
and the strength by the number of correlated dislocations. (b) Same
as above, with L � 200 and � � 20. The peak has shifted position to
half its previous qw value. Its peak height is the same because the
same number of correlated dislocations are present in each case and
so is the total number of dislocations in the wall. The peak width is
reduced by half because the correlation distance is increased. (c)
Same as (a), with B=N � 0:1. Now a small narrow peak appears at
the origin. As B is increased, this peak grows proportionally to B2.
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inverse of the wall length, 1=L. This is the same peak
that is found for the ordered and random cases, (39) and
(27). That is, the peak at the origin is independent of
order and depends only on the nonzero value of B.

4. Computer simulations

In this section, computer simulations are used to con®rm
the correctness of the analysis developed in the previous
sections given the various assumptions that were made.
Calculations are performed on a square X±Y lattice with
unit spacing. This lattice does not represent the atomic
positions in the sample; instead, we assume that a site of
the lattice represents a region of underlying crystal. At
each site, we use (5) to compute the dilatation of a
distribution of dislocations. Thus, the simulation
averages the dilatation over a small region represented
by the lattice site. The resulting sampling errors are
minimized by considering only dislocation distributions
that are sparse relative to the lattice spacing. Since the
dilatation is singular at the core of a dislocation, we set
the dilatation of a cell containing a dislocation center to
zero. The reason is that the position of the center of the
dislocation is most reasonably set at the center of the
cell and, in that case, the average dilatation over the cell
is zero. Equations (1) and (2) are then used to compute
the scattered intensity directly from the dilatation of the
lattice.

Three simulations are presented. In the ®rst, the form
factor of a single dislocation is examined. This is
followed by a look at the con®guration factor of a
random wall of zero thickness with B � N. Finally, the
case of a random wall of zero thickness with B � 0 is
investigated. The random-wall results are obtained by
using a random-number generator to generate a large
number of random dislocation con®gurations with the
required parameters. The con®guration factors calcu-
lated from these con®gurations are then averaged to
obtain the ®nal results. In all of the simulations, the
Burgers vectors of the dislocations have equal magni-
tude and lie in the X direction. Dislocation walls are
aligned along the Y axis, perpendicular to the slip plane.
In this con®guration, the qw direction is favorable for
scattering, but no scattering will take place in the
thickness direction because of the single dislocation
form factor.

The ®rst simulation is meant to con®rm the scattering
from a single dislocation as given by (6). The dislocation
is located at the center of a square lattice with an edge
length of 400 cells; the results are shown in Fig. 5. The
abscissa in these plots is given in terms of the normalized
units qwd0, where d0 is the lattice parameter. These are
the natural units for the computer, where it is conve-
nient to take the cell size as unity. First, note that the
scattered intensity goes to zero as qw ! 0, and the
expected oscillatory Bessel-function character is
con®rmed. Also, the maximum of the scattering occurs

at qw � 2�=R � 0:005 as predicted by (6) with the
upper cut-off distance, R, set to the distance from the
dislocation to the sample edge, or R � 200d0. Finally,
the log plot shown in Fig. 5(b) shows that the asymptotic
form of the scattering is 1=q2

w, for large qw, as predicted.
Not shown is the scattering for qt, which is strictly zero,
as predicted by (6).

It is important to note that the oscillations predicted
by (6) and shown in Fig. 5 would not be observed in an
actual experiment on deformed samples. This is because
the coherence length,R, is not a sharp cut-off that is the
same for all dislocations. Thus, averaging over the
dislocations in a sample would produce an `averaged'
structure factor with a simple qÿ2

w behavior and no
oscillations.

It is useful to examine what happens to the scattering
at qw � 0 when the dislocation is displaced from the
origin in the Y direction. This is related to the qw � 0
scattering for a dislocation dipole. When a single dislo-
cation is displaced normal to its Burgers vector in the Y
direction, since the computation cell is ®nite, the net

Fig. 5. Scattering for a single dislocation at the origin of a square lattice
with 401 sites on a side. (a) is a cut along the qw axis, showing the
intensity of scattering as a function of q. (b) is a log plot of the same
data showing that the qw dependence for large qw is qÿ2

w .
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volume change in the cell is non-zero. This is because the
number of atoms above the slip plane, where the dila-
tation is negative, is different from the number below
the slip plane, where the dilatation is positive. Thus, the
scattering at qw � 0 increases as the dislocation is
displaced in the positive Y direction. Similarly, for a
dislocation dipole of positive and negative Burgers
vector, with the dipole oriented along the Y axis, there is
again a net volume change for the computation cell
overall. Thus, a wall of alternating dislocations along the
Y axis will have a net volume change equivalent to a
single dipole of effective displacement equal to the
length of the wall and effective Burgers vector equal to
b=2 (or, equivalently, a single whole dipole with a length
equal to half the wall length).

The plots in Fig. 6 show simulations of the wall
function [equation (9)] for randomized walls of zero
thickness with 100 dislocations, which are averaged over
1000 independent con®gurations. In Fig. 6(a), all of the
dislocations have the same sign and, in Fig. 6(b), the
dislocations have zero net Burgers vector. These simu-
lations should be compared with (27) and (26). In both
cases, we have set jbej � f ��� � 1. Fig. 6(a) for the same
sign wall shows that the scattering has a strong peak at
the origin proportional to the square of the number of
dislocations. (Of course, the total scattered intensity is a
product of the single dislocation function, which goes to
zero at qw � 0, and otherwise multiplies the wall func-
tion by qÿ2

w when qw is large.) At large q, the function
approaches its asymptotic value of N. The B � 0 wall
function, depicted in Fig. 6(b), has a `hole' at the origin,
and then rises to the same asymptotic value as before. In
both Figs. 6(a) and 6(b), the peak (and hole) have widths
given by �qw � 2�=L, as predicted. We note that the wall
function in both cases approaches an asymptotic value
proportional to the total number of dislocations in the
wall. This asymptotic value is the term we have called
the `self-scattering' term in (12) and its later incarna-
tions.

5. Conclusions

The theory developed in this paper for small-angle
scattering by dislocations in deformed single crystals has
the traditional feature that the scattering is a product of
several independent factors. Aside from the atomic
structure factor and the sample size form factor, neither
of which is considered in this paper, the intensity is
composed of a structure factor for the `single defect',
which may be either a single dislocation or a dislocation
dipole pair, and a con®guration factor for the con®gur-
ation of single defects.

Experiments capable of measuring the relevant
parameters will be dif®cult and very few existing SAS
facilities currently have the necessary q range extending
below 10ÿ4 AÊ ÿ1, with �q< 10ÿ4 AÊ ÿ1. Experimental
dif®culties include such requirements as avoidance of

accidental Bragg peaks, adequate rotational control of
the sample/beam geometry, high-quality single-crystal
dog-bone-shaped metal samples that are thin enough to
limit multiple scattering, a tensile stage capable of
deforming these samples in situ while simultaneously
measuring the engineering stress and strain, high beam
brightness and ultra-low-angle capabilities. The smallest
q that can be reached using existing suitable USAXS
facilities corresponds to a spatial distance of �1 mm.
Thus, large structures such as entire dislocation walls
and cells are not at present visible. However, the local
organization of dislocations within a wall should
certainly be accessible. Thus, the theory should be
applied to the structure of walls, and to the scattering of
individual dislocations, but not to the scattering by
complete cells. A new USAXS facility under construc-
tion at the Advanced Photon Source will extend this
usable q range by about a factor of 5 (to below

Fig. 6. Wall con®guration factors for random walls containing 100
dislocations with (a) B � N and (b) B � 0. The ®gures show hWi
plotted against qw. The wall length is 500 lattice spacings.
Dislocation positions are randomized and averaged over 1000
simulations. In both cases, the asymptotic value for large qw is the
total number of dislocations.
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10ÿ5 AÊ ÿ1), which should allow the observation of
complete cells in many cases.

The structure factor for the single dislocation can be
written as two separate factors corresponding to the `qz

scattering' for the scattering due to the length coordi-
nate of the dislocation and the qp scattering normal to
the length direction. The qz structure factor has a strong
and narrow maximum when the scattering vector is
normal to the length direction, with a simple `diffraction
function' angular dependence. The scattered intensity
reaches a maximum when the scattering vector is also
perpendicular to the edge components of the Burgers
vectors. For the single dislocation, this single defect
angular variation is rather `soft' with the form sin2 �,
while the dislocation dipole is more highly directional
with a `spot light' in the direction normal to the slip
plane of form sin4 �. Thus, a dislocation is best situated
to scatter when the scattering vector is perpendicular to
its slip plane.

The single dislocation structure factor is multiplied by
the factor for the con®guration of the dislocations, which
we have assumed is a diffuse wall. The wall function,
hWi, is composed of two additive terms. The ®rst term is
the self-scattering term which goes to zero as qwL! 0.
In both of the speci®c cases examined (i.e. the random
case and the fully ordered case), this term goes to zero
quadratically. For qwL� 1, this ®rst term in the wall
function is independent of qw, and is simply proportional
to the total number of scattering dislocations (or dislo-
cation dipoles). Because it is a constant for large qw, this
term in the wall function will be dominant when other
contributions that decrease with qw have decayed. In the
large qw domain, then, the scattering is characterized
simply by the single-defect structure factor, without the
complication of the defect con®guration, and the
strength of the scattering is linear in the total number of
scatterers. An important consequence of this fact is that,
if single dislocations and dipoles are both present in
signi®cant numbers, the problem becomes solvable in
this qw range. Thus, the scattered intensity in this range
will be the sum of qÿ2

w for single dislocations and qÿ3
w for

dislocation dipoles. Experiments in this range could
therefore settle the long-standing debate on the exis-
tence of dipoles in deformation structures (Mughrabi et
al., 1986; Argon & Haasen, 1993; Kuhlmann-Wilsdorf,
1995).

The second, q-dependent, term comprising the wall
function is again composed of two separate factors that
are multiplied together. The ®rst factor describes the
dimension along the wall (i.e. the qw direction) and
perpendicular to the dislocation lines. (In the case of
f.c.c. crystals, it is reasonable to assume that the walls are
composed of dislocations parallel to one another, but
not necessarily on the same slip planes.) This dimension
was normal to the slip plane in the computer simula-
tions. This factor depends both on the net Burgers
vector of the wall and on the presence of ordering in the

qw direction. For a completely random distribution with
B � N, this function has a peak at the origin propor-
tional to B2, which decreases quadratically to zero as a
function of qw in the range qwL� 1. For a completely
random distribution with B � 0, the term is zero.

When the dislocations are partially ordered, inter-
ference peaks appear associated with the inter-disloca-
tion distance and the correlation length. For B 6� 0, the
same peak at the origin appears that was discussed for
the random case. For all B, a dislocation Bragg peak
exists at a position characterized by the defect structure
repeat distance. For complete ordering, the peak is sharp
with a width given by the number of dislocations in the
wall, but if the order is only short range, with correla-
tions extending only a few interdislocation distances,
then the peak is much broader.

The second factor in the q-dependent term describes
the q dependence normal to the wall in the thickness
direction. The thickness con®guration factor is a delta
function when the thickness goes to zero, and otherwise
depends on the distribution of the dislocations in the
thickness direction. If the dislocations are distributed
randomly within a thick wall, and the wall has a sharp
interface, then the qt scattering will have a conventional
qÿ2

t behavior. If the interface is diffuse rather than sharp,
the functional form deviates from this as shown in (38).
We estimate that interface widths greater than 500 AÊ

should be readily observable.
In summary, any experimental investigation of the

dislocation structures must be guided by geometrical
considerations of the incident X-ray or neutron direc-
tion and its relation to the relevant slip systems of the
material. It is found that only those dislocations lying
normal to the scattering vector will contribute signi®-
cantly to the scattering due to the strong peak in the
con®guration factor for the single dislocation. Further,
the scattering will be peaked (very strongly in the case of
dislocation dipoles) for q also perpendicular to the
Burgers vector. Thus, the most favorable scattering
geometry will be one with the scattering vector
perpendicular to the slip plane of the dominant dislo-
cations. Above a particular jqj, the scattering will be
sensitive only to the total number of scattering edge
dislocations, while, below this value, the scattering will
be sensitive to the ordering within the walls. For carpet
structures, the scattering will be determined by the
distribution in the thickness direction, while, for walls
normal to the dominant slip plane, the scattering will be
determined by the ordering within the plane of the walls
and the net Burgers content. Structural features will be
accessible only to the extent that the lowest measurable
jqj corresponds to the length scale of the relevant
structure. Thus, dislocation structure within a wall
should be readily accessible by current USAXS, while
the cellular structure formed by the walls will be
accessible only by the next generation facilities and for
specimens at relatively high strain levels. In principle, it
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should be possible to obtain considerable information
about dislocation structures in a deformed metal by a
considered variation of the geometry between the inci-
dent beam and the active slip systems of the material. It
remains to be seen just how much information can be
extracted from such experiments in practice. This
question is being pursued further.

References

Argon, A. (1996). Physical Metallurgy, edited by R. W. Cahn &
P. Haasen, Vol. 3, pp. 1878±2007. New York: North Holland.

Argon, A. & Haasen, P. (1993). Acta Metall. Mater. 41,
3289±3306.

Atkinson, H. H. & Hirsch, P. B. (1958). Philos. Mag. 3,
213±228

Debye, P. (1930). Phys. Z. 31, 348±350.
Dexter, D. (1953). Phys. Rev. 90, 1007±1012.
Essman, U. & Mughrabi, H. (1979). Philos. Mag. A40,

731±756.
Guinier, A. (1994). X-ray Diffraction in Crystals, Imperfect

Crystals, and Amorphous Bodies. New York: Dover.
Hirth, J. P. & Lothe, J. (1982). Theory of Dislocations. New

York: Wiley.

Koberstein, J. T., Morra, B. & Stein, R. S. (1980). J. Appl. Cryst.
13, 34±45

Kocks, U. F. (1985). Proceedings of 50th Anniversary
Symposium on Dislocations and Properties of Real Materials,
pp. 125±143. London: The Institute of Metals.

Kuhlmann-Wilsdorf, D. (1995). Phys. Status Solidi A, 149,
131±153.

Levine, L. E., Long, G. G. & Thomson, R. (1999). To be
published.

Levine, L. E. & Thomson, R. (1997). Acta Cryst. A53, 590±602.
Mughrabi, H., Ungar, T., Kienle, W. & Wilkens, M. (1986).

Philos. Mag. 53, 793±813.
Porod, G. (1982). In Small Angle X-ray Scattering, edited by

O. Glatter & O. Kratky. New York: Academic Press.
Rollett, A. D. (1988). Strain Hardening at Large Strains in

Aluminium Alloys, Report LA-11202-T. Los Alamos
National Laboratory, NM, USA.

Ruland, W. (1971). J. Appl. Cryst. 4, 70±73.
Seeger, A. (1959). J. Appl. Phys. 30, 629±637.
Seeger, A. & Brand, P. (1965). In Small Angle Scattering, edited

by H. Brumberger, pp. 383±399. New York: Gordon and
Breach.

Seeger, A. & Kroner, E. (1959). Z. Naturforsch. Teil A, 14,
74±80

Steeds, J. W. (1966). Proc. R. Soc. London Ser. A, 292, 343±373.


